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During the past 50 years, the fertility of high-producing lactating dairy cows has decreased,
associated with intensive selection for increased milk production. The physiological and
metabolic changes associated with high milk production, including decreased (glucose,
insulin, IGF-I) or increased (nonesterified fatty acids, ketone bodies) concentrations of
circulating metabolites during nutrient partitioning associated with negative energy bal-
ance as well as uterine and nonuterine diseases have been linked with poor reproductive
efficiency. Fertilization is typically above 80% and does not seem to be the principal factor
responsible for the low fertility in dairy cows. However, early embryonic development is
compromised in high-producing dairy cows, as observed by most embryonic losses
occurring during the first 2 weeks after fertilization and may be linked to compromised
oocyte quality due to a poor follicular microenvironment, suboptimal reproductive tract
environment for the embryo, and/or inadequate maternal–embryonic communication.
These and other factors related to embryo development will be discussed.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

In themodern Holstein, calving rates are close to 55% to
60% in heifers and 35% to 40% in lactating dairy cows. The
physiological changes associated with high milk produc-
tion have been linked with poor reproductive efficiency in
commercial dairy herds [1]. Decreased (glucose, insulin,
IGF-I) or increased (nonesterified fatty acids [NEFA],
ketone bodies) concentrations of circulating metabolites
during nutrient partitioning associated with low body
condition score and disease status undoubtedly play a role
in determining reproductive outcome. However, under-
standing the causes of infertility in dairy cattle is complex
and may be attributable to impacts at numerous points
along the developmental axis including compromised
follicle development impacting on oocyte quality, a
n).
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suboptimal reproductive tract environment incapable of
supporting normal embryo development, or a combina-
tion of both [2].

Many reviews of dairy cow fertility in the past few
decades have begun with reference to the antagonistic
relationship between selection for milk production and
cow fertility. It is clear that at herd level, there are negative
genetic correlations between production and reproduc-
tion. Phenotypically, however, within a herd, individual
high-producing cows are often more fertile, possibly a
reflection of animal health [3]. Others have highlighted
that the production–reproduction antagonism may not be
as pervasive as generally believed [4,5]. Undoubtedly, cow
fertility worldwide has declined over the past 50 years,
whether measured in terms of calving interval, duration
from calving to conception, or number of inseminations
required for conception (pregnant/artificial insemination
[AI]) [1]. Nonetheless, with changes in the indexes used
for sire and dam selection, such as the Economic Breeding
Index in Ireland, which include weightings for fertility
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(calving interval), survivability, and health traits, the
decline in fertility would appear to have been halted and
perhaps even somewhat reversed [6].

Sartori et al. [7] recently comprehensively reviewed
published data on fertilization and embryo quality (during
the first week after conception) and the main factors
responsible for the low fertility in single-ovulating and
superovulated dairy cows. Rather than repeating this
information, the focus of this review was to summarize
recent data on embryo development in dairy cows with an
emphasis on development after the first week, encom-
passing conceptus elongation and maternal recognition of
pregnancy.

2. Subfertilityda multifactorial issue

Assuming cows are submitted for AI at an appropriate
time or are bred naturally, reproductive failure results from
fertilization failure or poor embryo survival after fertiliza-
tion. Studies in dairy and beef cattle indicate that fertil-
ization rates are typically high (>80%) and are higher for
nulliparous dairy and beef heifers and nonlactating beef
cows than lactating beef and dairy cows and nonlactating
dairy cows. These data have been comprehensively
reviewed by several authors [7–10].

2.1. Follicle/oocyte

Given that most embryonic loss occurs early during
pregnancy, one can implicate several components of the
early developmental continuum including the follicle,
oocyte, embryo, and/or conceptus–uterine interaction.

In vitro studies examining the effect of lactation or
genetic merit for milk production on oocyte quality have
led to equivocal results. For example, Snijders et al. [11]
found that a lower proportion of oocytes recovered from
dairy cows with a higher genetic merit for milk production
underwent cleavage or developed to the blastocyst stage
in vitro compared with those from cows of average genetic
merit. Rizos et al. [12] reported no difference in the pro-
portion of good-quality oocytes undergoing fertilization
and development to the blastocyst stage between
lactating cows and heifers after ovum pick up/IVF. Several
studies from Virginia [13–15] demonstrated that condi-
tions related to early lactation have a negative effect on
oocyte quality and endocrine measures in dairy cattle;
however, in these articles, oocyte quality was assessed
based solely on morphology, which may be of limited
value. A more recent study from our group [16] involving
ovum pick up in lactating dairy cows from 7 to 85 days
postpartum failed to demonstrate an effect of metabolic
status postpartum on oocyte ability to undergo IVF and
develop to the blastocyst stage in vitro despite expected
changes in circulating metabolites during the same period
reflective of cows in negative energy balance. It may be
that IVF, which typically is limited to blastocyst develop-
ment rates of 30% to 40% from starting immature oocytes,
is simply not sufficiently sensitive to detect subtle differ-
ences in oocyte quality.

Evidence supporting a contribution of poor oocyte
quality to subfertility in dairy cows comes from a variety of
sources. First, the limited available data on nonsurgical
flushing of unstimulated dairy cows (reviewed by [7]) sug-
gest that a significant proportion of embryos degenerate
before the blastocyst stage. For example, in three studies by
Cerri et al. [17–19], the proportion of viable embryos
recovered on Days 6 to 7 was approximately 50%. Given that
the fertilization rate is estimated at 85% to 95%, this suggests
that a significant proportion of embryos are lost as early as
Day 7. Second, several studies have reported higher preg-
nancy rates in lactating dairy cows after embryo transfer (ET)
compared with AI [20–26]. However, it should be noted that
many of these studies used cows exposed to heat stress
where the oocyte and/or embryo are damaged by maternal
hyperthermia [27]. If one examines studies in which heat
stress was not a factor, the difference in pregnancy rates
between AI and ET is less striking or absent [28,29]. Third,
exposure of oocytes in vitro to NEFA at physiological con-
centrations consistent with those measured in the preovu-
latory follicle of postpartum lactating cows is detrimental to
oocyte development [30–33] and oviduct cell function [34]
and subsequent embryo development [35]. Furthermore,
Girard et al. [36] reported that negative energy balance
altered gene expression in granulosa cells of dairy cows at
60 days postpartum.

Consistent with these data, the metabolomic profile of
follicular fluid (FF) from heifers and postpartum non-
lactating and lactating cows has highlighted differences in
the microenvironment inwhich the oocyte develops which
may contribute to compromised oocyte quality [37–39].
Bender et al. [37] investigated the metabolic differences
between FF from the dominant follicle of lactating cows
and heifers using gas chromatography mass spectrometry–
based metabolomics. FF and serum were collected from
cows and heifers over three phases of follicle development:
newly selected dominant follicles, preovulatory follicles
before estrus, and post-LH surge follicles. Analysis of the
fatty acids revealed 24 fatty acids and nine aqueous me-
tabolites which were significantly different between cows
and heifers. Of particular interest were the higher con-
centrations of saturated fatty acids (palmitic acid, stearic
acid) in FF from cows and higher docosahexaenoic acid
levels in FF from heifers.

Forde et al. [38] examined the effect of lactation on the
composition of preovulatory FF in postpartum Holstein
cows and maiden heifers. Principal component analysis of
FF metabolites revealed a clear separation of lactating cows
from both nonlactating cows and heifers. The amino acids
tyrosine, phenylalanine, and valine and fatty acids henei-
cosanoic acid and docosahexaenoic acid were all lower in
FF from lactating compared with dry cows. FF from
lactating cows was higher in aminoadipic acid, a-amino-
butyric acid, glycine, and serine, whereas histidine, leucine,
lysine, methionine, and ornithinewere all lower than in dry
cows and heifers. The ratio of n6:n3 was higher in lactating
cows compared with both nonlactating cows and heifers,
whereas total n3 polyunsaturated fatty acids, pentadeca-
noic, linolenic, elaidic, and arachidonic acids were all lower
in the FF of lactating cows than both nonlactating cows and
heifers.

Using a previously established dairy cow fertility model
[40,41], Moore et al. [39] examined the metabolomics
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profile of FF from the first-wave dominant follicle of dairy
cows with similar genetic merit for milk production but
with extremes of good or poor genetic merit for fertility.
The abundance of nine fatty acids (arachidic acid, henei-
cosanoic acid, myristic acid, behenic acid, myristoleic acid,
heptadecenoic acid, cis-11-eicosanoic acid, nervonic acid,
and g-linolenic acid) in FF was affected by genotype. Con-
centrations of cysteine, leucine, ornithine, proline, and
tyrosine in FF and asparagine, creatinine, cysteine, methi-
onine, proline, and valine in serum were also affected by
genotype. Authors concluded that FF and serum fatty acids
and FF amino acids that were significantly affected by ge-
notype were highly predictive of fertility genotype.

Others have attempted to correlate FF composition
directly with oocyte developmental competence. For
example, Matoba et al. [42] investigated the ability of a
panel of follicular parameters including intrafollicular
metabolomic profiles to predict the potential of bovine
oocytes to develop to the blastocyst stage in vitro. Principal
component analysis of the quantified aqueous metabolites
in FF showed differences between oocytes that formed
blastocysts and oocytes that degenerated; l-alanine,
glycine, and l-glutamate were positively correlated, and
urea was negatively correlated with blastocyst formation.
FF associated with competent oocytes was significantly
lower in palmitic acid and total fatty acids and signifi-
cantly higher in linolenic acid than FF from incompetent
oocytes. Sutton-McDowell et al. [43] related the compo-
sition of FF and blood plasma from individual Holstein
dairy cows to the in vitro developmental competence of
pooled abattoir-derived oocytes. Cumulus–oocyte com-
plexes were matured in either 50% FF or 50% plasma.
Blastocyst rates were negatively related to plasma glucose
and days postpartum and positively related to body con-
dition score and plasma NEFA levels. Total NEFA levels in
FF did not influence oocyte developmental competence
in vitro. Results suggest that days postpartum and body
condition score influence carbohydrate metabolism
within the follicular environment.

2.2. Reproductive tract environment

Consistent with the multifactorial nature of subfertility
in dairy cows, the reproductive tract (oviduct/uterus)
clearly also plays a crucial role in providing an appropriate
environment conducive to normal embryo development
leading up to maternal recognition of pregnancy, a period
around which a substantial part of embryo loss occurs [9].
Several studies from our group [44–47] and others [48,49]
have emphasized the important role of progesterone in the
first week after conception in establishing an optimum
uterine milieu to support conceptus elongation around the
time of maternal recognition. ET studies allow us to test the
ability of the reproductive tract to support development
without the confounding effect of the cow’s own, poten-
tially compromised, oocyte. Studies from our group using
multiple ETs of in vitro produced embryos indicate that the
ability of the reproductive tract of postpartum lactating
cows to sustain embryo development is compromised
compared to nulliparous heifers [50] or postpartum non-
lactating cows [51] between Days 2 and 7. The same trend
was observed between Day 7 and Days 14 to 16 when
lactating versus nonlactating cows are compared [52] but
not when postpartum lactating versus postpartum dry
cows were compared [51]. We reported that embryo
development to Day 7 in the reproductive tract of post-
partum lactating cows was compromised compared with
that in the tract of nulliparous heifers [50], consistent with
the data reviewed by Sartori et al. [7]. In that study, 100
two- to four-cell embryos were endoscopically transferred
to the oviduct ipsilateral to the corpus luteum of nullipa-
rous heifers or postpartum lactating cows on Day 2 after
estrus. Five days later, on Day 7, the oviduct and uterus
were flushed nonsurgically to recover the embryos. More
embryos were recovered from heifers than cows (79 vs.
57%, respectively). Of the embryos recovered, 34% had
developed to the blastocyst stage in the heifer oviduct, a
typical yield given that immature oocytes from abattoir-
derived ovaries were used, compared with only 18% in
the postpartum cow oviduct.

One justifiable criticism of the model described previ-
ously is that a nulliparous heifer is not the same as a
metabolically stressed postpartum cow in early lactation.
To overcome this criticism, Maillo et al. [51] used age-
matched postpartum primiparous dairy cows that were
either milked postcalving (i.e., lactating) or were dried off
immediately at calving (i.e., never milked, nonlactating) to
directly test the effects of lactation on postpartum fertility
characteristics. Lactation induced a significant alteration in
the pattern of many key metabolites associated with
fertility in postpartum cows which was associated with an
impairment in the ability of the reproductive tract of the
postpartum lactating dairy cow to support early embryo
development to the blastocyst stage around Day 60 post-
partum. Following endoscopic transfer of two- to four-cell
in vitro produced embryos to the oviduct ipsilateral to the
corpus luteum as described previously, more embryos had
formed blastocysts in nonlactating compared to lactating
cows (40 vs. 26%, respectively). Interestingly, by Day 90
postpartum, despite some latent differences in metabolic
profiles between groups, no evidence for a deleterious
effect of lactation on the ability of the uterus to support
conceptus elongation was observed.

3. Conceptus development in dairy cows

After fertilization of the oocyte in the oviduct, the
resulting embryo is transported toward the uterus as it
undergoes the first mitotic cleavage divisions. The bovine
embryo enters the uterus at about the 16-cell stage on
approximately Day 4 of pregnancy. Subsequently, it forms a
compact ball of cells referred to as a morula in which cell-
to-cell tight junctions are first established. By Day 7, the
embryo becomes a blastocyst consisting of an inner cell
mass which, after further differentiation, gives rise to the
embryo, and the trophectoderm, which forms the placenta.
After hatching from the zona pellucida on Days 9 to 10, the
spherical blastocyst continues to grow and change its
morphology. Conceptus elongation involves transitions
from a spherical blastocyst on Day 7 of gestation, through
ovoid (Days 12–13), tubular (Days 14–15), and finally fila-
mentous forms around Days 16 to 17 [53]. After Day 19, the
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fully elongated conceptus begins implantation with firm
apposition and attachment of the trophectoderm to endo-
metrial luminal epithelium. During elongation, the
conceptus increases in size more than 1000-fold [54,55]
associated with an increase in protein content [55,56].

Up to the blastocyst stage, the embryo is somewhat
autonomous and does not need contact with the environ-
ment of the maternal reproductive tract, confirmed by the
fact that blastocysts can be successfully developed in vitro
in large numbers using IVF technology. Nonetheless, the
maternal environment does modify the embryo during this
time as evidenced by the positive effects of in vivo culture
on various embryo quality parameters [57]. In contrast,
normal development of the posthatching and preimplan-
tation conceptus is entirely maternally driven, dependent
on substances present in the uterine lumen, termed his-
totroph. These secretions which derive from the endome-
trium, particularly the uterine glands, are essential for
growth and development of the conceptus. Normal
conceptus elongation does not occur in vitro [58–60], and
the experimentally induced absence of uterine glands
in vivo results in a failure of blastocysts to elongate after ET
[61,62]. While the importance of endometrial receptivity
and gene expression during the pre- and peri-implantation
period is well established, as mentioned earlier, there is
evidence that the developing embryo can alter the endo-
metrial transcriptome [63,64]. Thus, proper communica-
tion between the conceptus and endometrium is vital for
pregnancy establishment.

Progesterone from the corpus luteum acts indirectly via
the endometrium to stimulate embryonic growth and
conceptus elongation [49,65]. Earlier studies in ewes [66,67]
and cows [68] suggested that maternal progesterone regu-
lates early conceptus growth and development. More recent
studies have confirmed those findings and begun to unravel
the underlying biology [46,47].

Numerous studies have reported a wide variation in
length between conceptuses recovered on the same day,
whether due to experimental conditions such as embryo
source or due to altered progesterone concentrations. For
example, one consistent observation from the multiple
ET studies we have carried out, involving the transfer of
10 to 20 Day-7 blastocysts to the uterus of synchronized
recipients and subsequent recovery, is the variation in
conceptus size on Day 14, even among those recovered
from the same uterus. This would suggest that factors
intrinsic to the blastocysts transferred regulate, at least in
part, development and would be consistent with the
hypothesis that the quality of the oocyte regulates devel-
opmental competence [57]. It has been estimated that
approximately one-third of viable blastocysts on Day 6 of
development fail to elongate and maintain the pregnancy
by Day 28 of gestation [8].

A considerable volume of data exist in the literature on
global gene expression in early bovine embryos, particu-
larly at the blastocyst stage, no doubt partly due to the
ease with which such embryos can be recovered in vivo or
be generated in vitro. Furthermore, most research con-
ducted to investigate the period of conceptus elongation in
cattle has focused on the biology of endometrium. In
contrast, relatively few such studies have focused on the
elongating conceptus [69–72] with only a small number
focused specifically on conceptuses from dairy cows
[73,74].

Thompson et al. [75] characterized postpartum meta-
bolic and hormonal differences between nonlactating and
lactating dairy cows and evaluated lactation and preg-
nancy effects on endometrium and conceptus expression
of selected genes and characterized associations between
conceptus and endometrial expression of genes in early
pregnancy (Day 17). Lactating cows had greater plasma
concentrations of b-hydroxybutyrate and blood urea N
and lower concentrations of glucose and progesterone
compared with nonlactating cows. Insulin-like growth
factor 1 was lower for lactating cows and was greater for
cows subsequently classified pregnant compared with
cyclic. Using tissues from the same group of cows, Cerri
et al. [76] determined effects of lactation and pregnancy
on endometrial gene expression on Day 17 of the estrous
cycle and pregnancy. In total, 210 genes were differentially
regulated by lactation (136 downregulated and 74 upre-
gulated), and 702 genes were differentially regulated by
pregnancy (407 downregulated and 295 upregulated). The
interaction effect of pregnancy and lactation affected 61
genes. Genes upregulated and downregulated in pregnant
cows were associated with several gene ontology terms,
such as defense response and interferon regulatory factor,
cell adhesion, and extracellular matrix. Several genes
upregulated by lactation, such as IGHG1, IGLL1, IGK, and
TRD, were related to immune function. Developmental
genes related to limb and neural development and glucose
homeostasis (e.g., DKK1, RELN, PDK4) were downregulated
by lactation. Reduction in expression of DKK1, e.g., could
potentially be deleterious for the embryo as this molecule
has been implicated in the regulation of embryo compe-
tence to develop to term [77].

Valour et al. [78] analyzed the change in gene expres-
sion related to dam physiological status in Day-18 embryos
from growing heifers (GH), early-lactating cows (ELC), and
late-lactating cows (LLC). Embryo metabolism was greatly
affected by dam physiological status when GH were
compared with ELC and GH with LLC but to a lesser extent
when ELC was compared with LLC. Genes involved in
glucose, pyruvate, and acetate utilization were upregulated
in GH versus ELC conceptuses (e.g., SLC2A1, PC, ACSS2,
ACSS3). This was also true for the pentose pathway (PGD,
TKT), which is involved in synthesis of ribose precursors of
RNA and DNA. The pathways involved in lipid synthesis
were also upregulated in GH versus ELC. Despite similar
morphological development, the molecular characteristics
of the heifer embryos were consistently different from
those of the cows.

Recently, we examined the effect of lactation on the
conceptus transcriptome by transferring single embryos
derived by the superovulation of nulliparous heifers to
the uteri of synchronized postpartum dry and lactating
Holstein cows [73]. To isolate the effect of the uterine
environment and avoid confounding issues of the cow’s
own oocyte, we transferred single high-quality embryos
recovered from nulliparous heifers to both groups of
cows. Conceptuses derived from heifers artificially
inseminated to a synchronized cycle were used as a
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control. Results of RNA sequencing analysis of the con-
ceptuses revealed no differences in gene expression pat-
terns for conceptuses recovered from nonlactating cows
compared to heifers or nonlactating cows versus lactating
heifers, consistent with the findings of Valour et al. [78].
The transcripts programmed cell death 4 (neoplastic
transformation inhibitor: PDCD4); pecanex-like protein 1
(LOC101908863); jagged 1 (JAG1); CDC42 effector protein
(Rho GTPase binding) 4 (CDC42EP4); signal-induced
proliferation-associated 1 like 3 (SIPA1L3); and Rho gua-
nine nucleotide exchange factor (GEF) 12 (ARHGEF12) were
higher in conceptuses recovered from nonlactating cows,
whereas the mRNA levels of TSR1, 20S rRNA accumulation,
homolog (S. cerevisiae) (TSR1), and solute carrier family 10
(sodium/bile acid cotransporter), member 1 (SLC10A1) were
lower in conceptuses recovered from nonlactating cows
compared to those recovered from heifers. In contrast, 100
differentially expressed genes were found with higher and
169 with lower transcript abundance in conceptuses
recovered from lactating cows compared to those
recovered from heifers. The transcript levels of
Dickkopf WNT signaling pathway inhibitor 4 (DKK4);
pregnancy-associated glycoprotein 1-like (LOC101903717);
uncharacterized LOC101906588 (LOC101906588); phospho-
glucomutase 2-like 1 (PGM2L1); interferon regulatory factor
2 (IRF2); guanine deaminase (GDA); cytochrome P450,
family 39, subfamily A, polypeptide 1 (CYP39A1); short
stature homeobox 2 (SHOX2); MX dynamin-like GTPase 2
(MX2); and mucin 4, cell surface associated (MUC4) were all
higher in trophoblast cells of conceptuses recovered from
lactating cows compared to heifers, whereas those of
wingless-type MMTV integration site family, member 2B
(WNT2B); heat shock 70-kDa protein 6 (HSP70 B0) (HSPA6);
neuronal guanine nucleotide exchange factor (NGEF);
pleckstrin homology domain containing, family F (with
FYVE domain) member 1 (PLEKHF1); methylenetetrahy-
drofolate dehydrogenase (NADP þ dependent) 1-like
(MTHFD1L); keratin 18 (KRT18); neurogranin (protein ki-
nase C substrate, RC3) (NRGN); sodium channel, voltage-
gated, type III, alpha subunit (SCN3A); tubulointerstitial
nephritis antigen (TINAG); and uncharacterized
LOC104973964 (LOC104973964) were decreased in the
conceptuses recovered from lactating cows to the greatest
extent on the basis of fold change difference.

Analysis of 18 amino acids from the uterine luminal fluid
(ULF) of these animals revealed significantly lower con-
centrations of small neutral amino acids (alanine, glycine,
serine, and threonine), a basic amino acid (arginine), two
large neutral amino acids (leucine and valine) in ULF of
heifers on Day 19 compared to both nonlactating and
lactating cows, whereas three amino acids (glutamic acid,
glutamine, and lysine) were lowest in heifers compared to
nonlactating and lactating cows, but concentrations were
also significantly higher in lactating cows compared to
nonlactating cows. Interestingly, no differences in expres-
sion values for amino acid transporters were identified in
either the conceptus of intercaruncular endometrium of
these animals. Results suggest that the differences
observed are due to the maternal environment given that
embryos were derived from the same pool before transfer
although whether they represent plasticity of the
conceptus or have consequences for pregnancy outcome
require further investigation.

4. Endometrial function in dairy cows

Given what was mentioned previously about the
dependency of the conceptus on the maternal uterine
environment for elongation to occur, it is appropriate to
briefly discuss the uterus itself, although as with the
conceptus, data from dairy cows are relatively scarce. The
uterus plays a central role among the reproductive tissues
in the context of early embryo–maternal communication,
and a successful pregnancy depends on a complex series of
endometrial molecular and cellular events. The tran-
scriptome of the endometrium is influenced by a number of
factors including the periovulatory endocrine milieu [79],
postovulatory progesterone concentrations [45–47,80],
uterine disease [81–83], genetic merit for fertility [84,85],
and presence of a conceptus [86,87]. However, although the
endometrial transcriptome signature can influence
conceptus development, it also is reflective of the quality or
type of embryo present; different types of embryos elicit
different responses which may be predictive of subsequent
fate [63,64,88].

Mesquita et al. [79] reported that the periovulatory
endocrine milieu regulates the endometrial tran-
scriptome in cattle and seems to determine the transition
from a proliferation permissive to a biosynthetic and
metabolically active endometrial phenotype, which may
be associated with the preparation of an optimally
receptive uterine environment. Moran et al. [84]
sequenced the transcriptome of endometrial biopsies
collected on Day 7 of the estrous cycle from cows of high
and low fertility, as described previously [40,41]. Signifi-
cant differential expression of 403 genes between high-
and low-fertility cows was found. A novel network-based
functional analysis highlighted 123 genes from three
physiologically relevant networks of the endometrium:
(1) actin and cytoskeletal components; (2) immune
function; and (3) ion transportation, providing molecular
evidence for an association between gene expression in
the uterine environment and genetic merit for fertility in
dairy cows.

A significant body of literature has demonstrated large
effects of disease on fertility in dairy cows [89–91].
Amongst recent studies, Oguejiofor et al. [83] described the
dysregulation of endometrial immune response to bacterial
lipopolysaccharide (LPS). After exposure of primary cul-
tures of mixed bovine epithelial and stromal endometrial
cells to LPS for 6 hours, approximately 30% of the 1006
genes altered by LPS were classified as being involved in
immune response. Cytokines and chemokines (IL1A,
CX3CL1, CXCL2, and CCL5), interferon-stimulated genes
(RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase
molecule SAA3 were the most upregulated genes. Addi-
tionally, many genes involved in endometrial response to
the conceptus in early pregnancy were also altered by LPS,
suggesting one mechanism whereby an ongoing response
to infection may interfere with the establishment of preg-
nancy. Ribeiro et al. [74] characterized the impact of
inflammatory uterine (retained placenta and metritis) and
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nonuterine (mastitis, lameness, digestive and respiratory
problems) diseases before breeding on developmental
biology and reproduction in cows. Inflammatory disease
before breeding negatively impacted oocyte fertilization,
development to morula, and impaired early conceptus
development to elongation stages and secretion of IFN-s.
Diseases caused inflammation-like changes in tran-
scriptome of conceptus cells, increased risk of pregnancy
loss, and reduced pregnancy or calving per breeding.
Occurrence of disease at preantral or at antral stages of
ovulatory follicle development had similar detrimental
effects on pregnancy outcome indicating carryover effects
of diseases might last longer than 4 months. The authors
concluded that reduced oocyte competence is a likely
reason for carryover effects of diseases on developmental
biology, but impaired uterine environment was also
implicated.

4.1. Conceptus-induced effects on the endometrium

We recently examined conceptus-derived proteins, in
addition to IFNT, that may facilitate pregnancy recognition
in cattle [92]. Analysis of the protein content of the ULF
from cyclic heifers on Day 16 by nano-liquid chromatog-
raphy tandem mass spectrometry identified 334 proteins.
Comparison of these data with 299 proteins identified in
the ULF of pregnant heifers on Day 16 identified 85 pro-
teins only present in the ULF of pregnant heifers. Analysis
of Day-16 conceptus-conditioned culture medium recov-
ered after 6- and 24-hour incubation in vitro revealed the
presence of 1005 proteins of which 30 were unique to ULF
from Day-16 pregnant heifers. Of these 30 proteins, 12 had
mRNA expression values at least twofold higher in abun-
dance in the conceptus compared to the endometrium
(ARPC5L, CAPG, CKMT1, CSTB, HSPA8, HSPE1, LGALS3, MSN,
NUTF2, P4HB, PRKAR2A, TKT) as determined by RNA
sequencing. In addition, genes that have a significant
biological interaction with the proteins (ACO2, CKMT1,
CSTB, EEF2, GDI1, GLB1, GPLD1, HNRNPA1, HNRNPA2B1,
HNRNPF, HSPA8, HSPE1, IDH2, KRT75, LGALS3, MSN, NUTF2,
P4HB, PRKAR2A, PSMA4, PSMB5, PSMC4, SERPINA3, TKT)
were differentially expressed in the endometrium of
pregnant compared to cyclic heifers during the pregnancy
recognition period (Days 16–18). These proteins that were
unique to ULF from pregnant heifers and produced by
short-term in vitro cultured Day-16 conceptuses could
potentially be involved in facilitating the interactions
between the conceptus and the endometrium during the
pregnancy recognition period.

5. Conclusion

Subfertility is a multifactorial issue resulting as a
consequence of insults at various points along the devel-
opmental axis. Evidence exists implicating the oocyte, the
embryo, and the reproductive tract in subfertility.
Improved understanding of the developmental biology
involved in conceptus development and uterine receptivity
in cattle may contribute for the development of strategies
to minimize embryonic losses and improve reproductive
efficiency in cattle.
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